Price Size
$280 100ul
$350 200ul

Same day delivery

Contact distributor
  • Product Name
    Phospho-mTOR (Ser2448) Antibody
  • Catalog No.
    AF3308
  • Source
    Rabbit
  • Application
    WB,IHC,ELISA
  • Reactivity:
    Human, Mouse, Rat, Fish
  • Prediction:
    Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%)
  • UniProt
  • Mol.Wt.
    250-289 kDa
  • Concentration
    1mg/ml
  • Browse similar products>>

Product Information

Alternative Names:Expand▼

dJ576K7.1 (FK506 binding protein 12 rapamycin associated protein 1); FK506 binding protein 12 rapamycin associated protein 1; FK506 binding protein 12 rapamycin associated protein 2; FK506 binding protein 12 rapamycin complex associated protein 1; FK506-binding protein 12-rapamycin complex-associated protein 1; FKBP rapamycin associated protein; FKBP12 rapamycin complex associated protein; FKBP12-rapamycin complex-associated protein 1; FKBP12-rapamycin complex-associated protein; FLJ44809; FRAP; FRAP1; FRAP2; Mammalian target of rapamycin; Mechanistic target of rapamycin; mTOR; MTOR_HUMAN; OTTHUMP00000001983; RAFT1; Rapamycin and FKBP12 target 1; Rapamycin associated protein FRAP2; Rapamycin target protein 1; Rapamycin target protein; RAPT1; Serine/threonine-protein kinase mTOR;

Applications:

WB 1:500-1:2000, IHC 1:50-1:200, ELISA(peptide) 1:20000-1:40000

Reactivity:

Human, Mouse, Rat, Fish

Predicted Reactivity:

Pig(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%)

Source:

Rabbit

Clonality:

Polyclonal

Purification:

The antibody is from purified rabbit serum by affinity purification via sequential chromatography on phospho-peptide and non-phospho-peptide affinity columns.

Specificity:

Phospho-mTOR (Ser2448) Antibody detects endogenous levels of mTOR only when phosphorylated at Serine 2448.

Format:

Liquid

Concentration:

1mg/ml

Storage Condition and Buffer:

Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.Store at -20 °C.Stable for 12 months from date of receipt.

Immunogen Information

Immunogen:

A synthesized peptide derived from human mTOR around the phosphorylation site of Ser2448.

Uniprot:



>>Visit The Human Protein Atlas

Gene id:

Molecular Weight:

Observed Mol.Wt.: 250-289 kDa.
Predicted Mol.Wt.: 289kDa.

Subcellular Location:

Endoplasmic reticulum membrane. Golgi apparatus membrane. Mitochondrion outer membrane. Lysosome. Cytoplasm. Nucleus > PML body. Shuttles between cytoplasm and nucleus. Accumulates in the nucleus in response to hypoxia (By similarity). Targeting to lysosomes depends on amino acid availability and RRAGA and RRAGB.

Tissue Specificity:

Expressed in numerous tissues, with highest levels in testis.

Description:

an atypical kinase belonging to the PIKK family of kinases. Controls cell growth through protein synthesis regulation. Downstream of PI3K/Akt pathway and required for cell survival. Acts as the target for the cell-cycle arrest and immunosuppressive effects of the FKBP12-rapamycin complex.

Sequence:
        10         20         30         40         50
MLGTGPAAAT TAATTSSNVS VLQQFASGLK SRNEETRAKA AKELQHYVTM
60 70 80 90 100
ELREMSQEES TRFYDQLNHH IFELVSSSDA NERKGGILAI ASLIGVEGGN
110 120 130 140 150
ATRIGRFANY LRNLLPSNDP VVMEMASKAI GRLAMAGDTF TAEYVEFEVK
160 170 180 190 200
RALEWLGADR NEGRRHAAVL VLRELAISVP TFFFQQVQPF FDNIFVAVWD
210 220 230 240 250
PKQAIREGAV AALRACLILT TQREPKEMQK PQWYRHTFEE AEKGFDETLA
260 270 280 290 300
KEKGMNRDDR IHGALLILNE LVRISSMEGE RLREEMEEIT QQQLVHDKYC
310 320 330 340 350
KDLMGFGTKP RHITPFTSFQ AVQPQQSNAL VGLLGYSSHQ GLMGFGTSPS
360 370 380 390 400
PAKSTLVESR CCRDLMEEKF DQVCQWVLKC RNSKNSLIQM TILNLLPRLA
410 420 430 440 450
AFRPSAFTDT QYLQDTMNHV LSCVKKEKER TAAFQALGLL SVAVRSEFKV
460 470 480 490 500
YLPRVLDIIR AALPPKDFAH KRQKAMQVDA TVFTCISMLA RAMGPGIQQD
510 520 530 540 550
IKELLEPMLA VGLSPALTAV LYDLSRQIPQ LKKDIQDGLL KMLSLVLMHK
560 570 580 590 600
PLRHPGMPKG LAHQLASPGL TTLPEASDVG SITLALRTLG SFEFEGHSLT
610 620 630 640 650
QFVRHCADHF LNSEHKEIRM EAARTCSRLL TPSIHLISGH AHVVSQTAVQ
660 670 680 690 700
VVADVLSKLL VVGITDPDPD IRYCVLASLD ERFDAHLAQA ENLQALFVAL
710 720 730 740 750
NDQVFEIREL AICTVGRLSS MNPAFVMPFL RKMLIQILTE LEHSGIGRIK
760 770 780 790 800
EQSARMLGHL VSNAPRLIRP YMEPILKALI LKLKDPDPDP NPGVINNVLA
810 820 830 840 850
TIGELAQVSG LEMRKWVDEL FIIIMDMLQD SSLLAKRQVA LWTLGQLVAS
860 870 880 890 900
TGYVVEPYRK YPTLLEVLLN FLKTEQNQGT RREAIRVLGL LGALDPYKHK
910 920 930 940 950
VNIGMIDQSR DASAVSLSES KSSQDSSDYS TSEMLVNMGN LPLDEFYPAV
960 970 980 990 1000
SMVALMRIFR DQSLSHHHTM VVQAITFIFK SLGLKCVQFL PQVMPTFLNV
1010 1020 1030 1040 1050
IRVCDGAIRE FLFQQLGMLV SFVKSHIRPY MDEIVTLMRE FWVMNTSIQS
1060 1070 1080 1090 1100
TIILLIEQIV VALGGEFKLY LPQLIPHMLR VFMHDNSPGR IVSIKLLAAI
1110 1120 1130 1140 1150
QLFGANLDDY LHLLLPPIVK LFDAPEAPLP SRKAALETVD RLTESLDFTD
1160 1170 1180 1190 1200
YASRIIHPIV RTLDQSPELR STAMDTLSSL VFQLGKKYQI FIPMVNKVLV
1210 1220 1230 1240 1250
RHRINHQRYD VLICRIVKGY TLADEEEDPL IYQHRMLRSG QGDALASGPV
1260 1270 1280 1290 1300
ETGPMKKLHV STINLQKAWG AARRVSKDDW LEWLRRLSLE LLKDSSSPSL
1310 1320 1330 1340 1350
RSCWALAQAY NPMARDLFNA AFVSCWSELN EDQQDELIRS IELALTSQDI
1360 1370 1380 1390 1400
AEVTQTLLNL AEFMEHSDKG PLPLRDDNGI VLLGERAAKC RAYAKALHYK
1410 1420 1430 1440 1450
ELEFQKGPTP AILESLISIN NKLQQPEAAA GVLEYAMKHF GELEIQATWY
1460 1470 1480 1490 1500
EKLHEWEDAL VAYDKKMDTN KDDPELMLGR MRCLEALGEW GQLHQQCCEK
1510 1520 1530 1540 1550
WTLVNDETQA KMARMAAAAA WGLGQWDSME EYTCMIPRDT HDGAFYRAVL
1560 1570 1580 1590 1600
ALHQDLFSLA QQCIDKARDL LDAELTAMAG ESYSRAYGAM VSCHMLSELE
1610 1620 1630 1640 1650
EVIQYKLVPE RREIIRQIWW ERLQGCQRIV EDWQKILMVR SLVVSPHEDM
1660 1670 1680 1690 1700
RTWLKYASLC GKSGRLALAH KTLVLLLGVD PSRQLDHPLP TVHPQVTYAY
1710 1720 1730 1740 1750
MKNMWKSARK IDAFQHMQHF VQTMQQQAQH AIATEDQQHK QELHKLMARC
1760 1770 1780 1790 1800
FLKLGEWQLN LQGINESTIP KVLQYYSAAT EHDRSWYKAW HAWAVMNFEA
1810 1820 1830 1840 1850
VLHYKHQNQA RDEKKKLRHA SGANITNATT AATTAATATT TASTEGSNSE
1860 1870 1880 1890 1900
SEAESTENSP TPSPLQKKVT EDLSKTLLMY TVPAVQGFFR SISLSRGNNL
1910 1920 1930 1940 1950
QDTLRVLTLW FDYGHWPDVN EALVEGVKAI QIDTWLQVIP QLIARIDTPR
1960 1970 1980 1990 2000
PLVGRLIHQL LTDIGRYHPQ ALIYPLTVAS KSTTTARHNA ANKILKNMCE
2010 2020 2030 2040 2050
HSNTLVQQAM MVSEELIRVA ILWHEMWHEG LEEASRLYFG ERNVKGMFEV
2060 2070 2080 2090 2100
LEPLHAMMER GPQTLKETSF NQAYGRDLME AQEWCRKYMK SGNVKDLTQA
2110 2120 2130 2140 2150
WDLYYHVFRR ISKQLPQLTS LELQYVSPKL LMCRDLELAV PGTYDPNQPI
2160 2170 2180 2190 2200
IRIQSIAPSL QVITSKQRPR KLTLMGSNGH EFVFLLKGHE DLRQDERVMQ
2210 2220 2230 2240 2250
LFGLVNTLLA NDPTSLRKNL SIQRYAVIPL STNSGLIGWV PHCDTLHALI
2260 2270 2280 2290 2300
RDYREKKKIL LNIEHRIMLR MAPDYDHLTL MQKVEVFEHA VNNTAGDDLA
2310 2320 2330 2340 2350
KLLWLKSPSS EVWFDRRTNY TRSLAVMSMV GYILGLGDRH PSNLMLDRLS
2360 2370 2380 2390 2400
GKILHIDFGD CFEVAMTREK FPEKIPFRLT RMLTNAMEVT GLDGNYRITC
2410 2420 2430 2440 2450
HTVMEVLREH KDSVMAVLEA FVYDPLLNWR LMDTNTKGNK RSRTRTDSYS
2460 2470 2480 2490 2500
AGQSVEILDG VELGEPAHKK TGTTVPESIH SFIGDGLVKP EALNKKAIQI
2510 2520 2530 2540
INRVRDKLTG RDFSHDDTLD VPTQVELLIK QATSHENLCQ CYIGWCPFW

Background

Function:

Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B, and the inhibitor of translation initiation PDCD4. Stimulates the pyrimidine biosynthesis pathway, both by acute regulation through RPS6KB1-mediated phosphorylation of the biosynthetic enzyme CAD, and delayed regulation, through transcriptional enhancement of the pentose phosphate pathway which produces 5-phosphoribosyl-1-pyrophosphate (PRPP), an allosteric activator of CAD at a later step in synthesis, this function is dependent on the mTORC1 complex. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 an RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422' (PubMed:12087098, PubMed:12150925, PubMed:12150926, PubMed:12231510, PubMed:12718876, PubMed:14651849, PubMed:15268862, PubMed:15467718, PubMed:15545625, PubMed:15718470, PubMed:18497260, PubMed:18762023, PubMed:18925875, PubMed:20516213, PubMed:20537536, PubMed:21659604, PubMed:23429703, PubMed:23429704, PubMed:25799227, PubMed:26018084). Regulates osteoclastogenesis by adjusting the expression of CEBPB isoforms (By similarity).

Post-translational Modifications:

Autophosphorylates when part of mTORC1 or mTORC2. Phosphorylation at Ser-1261, Ser-2159 and Thr-2164 promotes autophosphorylation. Phosphorylation in the kinase domain modulates the interactions of MTOR with RPTOR and PRAS40 and leads to increased intrinsic mTORC1 kinase activity. Phosphorylation at Thr-2173 in the ATP-binding region by AKT1 strongly reduces kinase activity.

Subcellular Location:

Lysosome;Endoplasmic reticulum;Nucleus;Mitochondrion;Golgi apparatus;

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionGraphics by Christian Stolte

Subunit Structure:

Part of the mammalian target of rapamycin complex 1 (mTORC1) which contains MTOR, MLST8, RPTOR, AKT1S1/PRAS40 and DEPTOR. The mTORC1 complex is a 1 Md obligate dimer of two stoichiometric heterotetramers with overall dimensions of 290 A x 210 A x 135 A. It has a rhomboid shape and a central cavity, the dimeric interfaces are formed by interlocking interactions between the two MTOR and the two RPTOR subunits. The MLST8 subunit forms distal foot-like protuberances, and contacts only one MTOR within the complex, while the small PRAS40 localizes to the midsection of the central core, in close proximity to RPTOR. Part of the mammalian target of rapamycin complex 2 (mTORC2) which contains MTOR, MLST8, PRR5, RICTOR, MAPKAP1 and DEPTOR. Interacts with PLPP7 and PML. Interacts with PRR5 and RICTOR; the interaction is direct within the mTORC2 complex. Interacts with WAC; WAC positively regulates MTOR activity by promoting the assembly of the TTT complex composed of TELO2, TTI1 and TTI2 and the RUVBL complex composed of RUVBL1 and RUVBL2 into the TTT-RUVBL complex which leads to the dimerization of the mTORC1 complex and its subsequent activation (PubMed:26812014). Interacts with UBQLN1. Interacts with TTI1 and TELO2. Interacts with CLIP1; phosphorylates and regulates CLIP1. Interacts with NBN. Interacts with HTR6 (PubMed:23027611). Interacts with BRAT1.

Similarity:

The kinase domain (PI3K/PI4K) is intrinsically active but has a highly restricted catalytic center.The FAT domain forms three discontinuous subdomains of alpha-helical TPR repeats plus a single subdomain of HEAT repeats. The four domains pack sequentially to form a C-shaped a-solenoid that clamps onto the kinase domain (PubMed:23636326).Belongs to the PI3/PI4-kinase family.

Research Fields

Research Fields:

· Cellular Processes > Transport and catabolism > Autophagy - other.(View pathway)
· Cellular Processes > Transport and catabolism > Autophagy - animal.(View pathway)
· Cellular Processes > Cell growth and death > Cellular senescence.(View pathway)
· Environmental Information Processing > Signal transduction > ErbB signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > mTOR signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Apelin signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > AMPK signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Phospholipase D signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > Jak-STAT signaling pathway.(View pathway)
· Environmental Information Processing > Signal transduction > PI3K-Akt signaling pathway.(View pathway)
· Human Diseases > Cancers: Specific types > Pancreatic cancer.(View pathway)
· Human Diseases > Cancers: Overview > Pathways in cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Gastric cancer.(View pathway)
· Human Diseases > Cancers: Specific types > Glioma.(View pathway)
· Human Diseases > Cancers: Specific types > Colorectal cancer.(View pathway)
· Human Diseases > Cancers: Overview > Proteoglycans in cancer.
· Human Diseases > Cancers: Specific types > Hepatocellular carcinoma.(View pathway)
· Human Diseases > Cancers: Specific types > Acute myeloid leukemia.(View pathway)
· Human Diseases > Cancers: Overview > MicroRNAs in cancer.
· Human Diseases > Endocrine and metabolic diseases > Type II diabetes mellitus.
· Human Diseases > Cancers: Specific types > Breast cancer.(View pathway)
· Human Diseases > Endocrine and metabolic diseases > Insulin resistance.
· Human Diseases > Cancers: Overview > Central carbon metabolism in cancer.(View pathway)
· Human Diseases > Cancers: Overview > Choline metabolism in cancer.(View pathway)
· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.
· Human Diseases > Drug resistance: Antineoplastic > EGFR tyrosine kinase inhibitor resistance.
· Human Diseases > Drug resistance: Antineoplastic > Endocrine resistance.
· Human Diseases > Cancers: Specific types > Prostate cancer.(View pathway)
· Organismal Systems > Endocrine system > Thyroid hormone signaling pathway.(View pathway)
· Organismal Systems > Endocrine system > Adipocytokine signaling pathway.
· Organismal Systems > Endocrine system > Insulin signaling pathway.(View pathway)
· Organismal Systems > Immune system > Th17 cell differentiation.(View pathway)
· Organismal Systems > Aging > Longevity regulating pathway.(View pathway)
· Organismal Systems > Aging > Longevity regulating pathway - multiple species.(View pathway)

Western blot analysis of extracts from LPS treated HepG2 cells, using Phospho-mTOR (Ser2448) Antibody. The lane on the left was treated with blocking peptide.
Western blot analysis of mTOR phosphorylation expression in mouse liver tissue lysates,The lane on the right was treated with the antigen-specific peptide.
AF3308 at 1/50 staining human lung cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3308 at 1/50 staining human lung cancer tissue sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hours at 22°C. An HRP conjugated goat anti-rabbit antibody was used as the secondary.
AF3308 at 1/100 staining human prostate cancer tissues sections by IHC-P. The tissue was formaldehyde fixed and a heat mediated antigen retrieval step in citrate buffer was performed. The tissue was then blocked and incubated with the antibody for 1.5 hou
Phospho-mTOR (Ser2448) Antibody for IHC in human prostate tissue
ELISA analysis of AF3308 showing specificity to Phospho-mTOR (Ser2448) peptide. Peptides concentration: 1ug/ml.
P-peptide: phospho-peptide; N-peptide: non-phospho-peptide.

Reference Citations:

1). He Y et al. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic Biol Med 2017 Feb;103:165-176 (PubMed: 27979659) [IF=5.657]

Application: WB    Species:rat;    Sample:Not available


2). Zhao ZH et al. PirB Overexpression Exacerbates Neuronal Apoptosis by Inhibiting TrkB and mTOR Phosphorylation After Oxygen and Glucose Deprivation Injury. Cell Mol Neurobiol 2017 May;37(4):707-715 (PubMed: 27443384) [IF=3.811]

3). Wu Z et al. Traditional Chinese Medicine CFF-1 induced cell growth inhibition, autophagy, and apoptosis via inhibiting EGFR-related pathways in prostate cancer. Cancer Med 2018 Apr;7(4):1546-1559 (PubMed: 29533017) [IF=3.357]

4). Zheng L et al. Selenium deficiency impaired immune function of the immune organs in young grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2018 Jun;77:53-70 (PubMed: 29559270) [IF=3.298]

5). Zhong JR et al. Phytic acid disrupted intestinal immune status and suppressed growth performance in on-growing grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2019 Jun 24;92:536-551 (PubMed: 31247320) [IF=3.298]

6). Wang KZ et al. Dietary gossypol reduced intestinal immunity and aggravated inflammation in on-growing grass carp (Ctenopharyngodon idella). Fish Shellfish Immunol 2018 Dec 10 (PubMed: 30543935) [IF=3.298]

7). Peng XR et al. Supplementation exogenous bile acid improved growth and intestinal immune function associated with NF-κB and TOR signalling pathways in on-growing grass carp (Ctenopharyngodon idella): Enhancement the effect of protein-sparing by dietary lipid. Fish Shellfish Immunol 2019 Jun 26;92:552-569 (PubMed: 31252043) [IF=3.298]

8). Cheng Y et al. Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3‑E1 cells. Int J Mol Med 2019 May 30 (PubMed: 31173178)

9). Huang L et al. Neuroprotective Effect of Curcumin Against Cerebral Ischemia-Reperfusion Via Mediating Autophagy and Inflammation. J Mol Neurosci 2018 Jan;64(1):129-139 (PubMed: 29243061)

10). Li XG et al. Neuroprotective effects of rapamycin on spinal cord injury in rats by increasing autophagy and Akt signaling. Neural Regen Res 2019 Apr;14(4):721-727 (PubMed: 30632514)

11). Xue TF et al. PD149163 induces hypothermia to protect against brain injury in acute cerebral ischemic rats. J Pharmacol Sci 2017 Nov;135(3):105-113 (PubMed: 29113791)

12). Qian L et al. Insulin Secretion Impairment Induced by Rosuvastatin partly though Autophagy in INS-1E Cells. Cell Biol Int 2019 Jul 24 (PubMed: 31342626)

13). Shang J et al. CircPAN3 contributes to drug resistance in acute myeloid leukemia through regulation of autophagy. Leuk Res 2019 Aug 2;85:106198 (PubMed: 31401408)

14). Gong J et al. Krüppel‑like factor 4 ameliorates diabetic kidney disease by activating autophagy via the mTOR pathway. Mol Med Rep 2019 Aug 9 (PubMed: 31432191)

15). Wu Z et al. EGFR‑associated pathways involved in traditional Chinese medicine (TCM)‑1‑induced cell growth inhibition, autophagy and apoptosis in prostate cancer. Mol Med Rep 2018 Jun;17(6):7875-7885 (PubMed: 29620175)

16). Li M et al. Respiratory Syncytial Virus Replication Is Promoted by Autophagy-Mediated Inhibition of Apoptosis. J Virol 2018 Mar 28;92(8) (PubMed: 29386287)

17). Li M et al. Respiratory Syncytial Virus Replication Is Promoted by Autophagy-Mediated Inhibition of Apoptosis. J Virol 2018 Mar 28;92(8) (PubMed: 29386287)

18). Jiang QQ et al. miR-25 Promotes Melanoma Progression by regulating RNA binding motif protein 47. Med Sci (Paris) 2018 Oct;34 Focus issue F1:59-65 (PubMed: 30403177)

19). Jin J et al. Rapamycin Reduces Podocyte Apoptosis and is Involved in Autophagy and mTOR/ P70S6K/4EBP1 Signaling. Cell Physiol Biochem 2018;48(2):765-772 (PubMed: 30025409)

20). Song Y et al. AMPK activation-dependent autophagy compromises oleanolic acid-induced cytotoxicity in human bladder cancer cells. Oncotarget 2017 Jul 4;8(40):67942-67954 (PubMed: 28978086)

Application: WB    Species:human;    Sample:Not available


21). Wu D et al. Olaquindox disrupts tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget 2017 Aug 16;8(51):88630-88644 (PubMed: 29179463)

22). Ji J et al. Antagonizing peroxisome proliferator-activated receptor γ facilitates M1-to-M2 shift of microglia by enhancing autophagy via the LKB1-AMPK signaling pathway. Aging Cell 2018 May 8:e12774 (PubMed: 29740932)

23). Hu J et al. Ursodeoxycholic acid ameliorates hepatic lipid metabolism in LO2 cells by regulating the AKT/mTOR/SREBP-1 signaling pathway. World J Gastroenterol 2019 Mar 28;25(12):1492-1501 (PubMed: 30948912)

24). et al. CB2 receptor agonist JWH133 activates AMPK to inhibit growth of C6 glioma cells.

25). Liang L et al. Autophagy inhibition potentiates the anti-angiogenic property of multikinase inhibitor anlotinib through JAK2/STAT3/VEGFA signaling in non-small cell lung cancer cells. J Exp Clin Cancer Res 2019 Feb 12;38(1):71 (PubMed: 30755242)

26). et al. Strontium promotes osteogenic differentiation by activating autophagy via the the AMPK/mTOR signaling pathway in MC3T3‑E1 cells.

27). et al. Erucic acid inhibits growth performance and disrupts intestinal structural integrity of on-growing grass carp (Ctenopharyngodon idella).

No comment
Total 0 records, divided into1 pages. First Prev Next Last

Submit Review

Support JPG, GIF, PNG format only
captcha
Catalog Number :

AF3308-BP
(Blocking peptide available as AF3308-BP)

Price/Size :

$200/1mg.
Tips: For phospho antibody, we provide phospho peptide(0.5mg) and non-phospho peptide(0.5mg).

Function :

Blocking peptides are peptides that bind specifically to the target antibody and block antibody binding. These peptide usually contains the epitope recognized by the antibody. Antibodies bound to the blocking peptide no longer bind to the epitope on the target protein. This mechanism is useful when non-specific binding is an issue, for example, in Western blotting (immunoblot) and immunohistochemistry (IHC). By comparing the staining from the blocked antibody versus the antibody alone, one can see which staining is specific; Specific binding will be absent from the western blot or immunostaining performed with the neutralized antibody.

Format and storage :

Synthetic peptide was lyophilized with 100% acetonitrile and is supplied as a powder. Reconstitute with 0.1 ml DI water for a final concentration of 10 mg/ml.The purity is >90%,tested by HPLC and MS.Storage Maintain refrigerated at 2-8°C for up to 6 months. For long term storage store at -20°C.

Precautions :

This product is for research use only. Not for use in diagnostic or therapeutic procedures.

Chicken
100%
Rabbit
100%
Pig
100%
Dog
100%
Sheep
100%
Horse
100%
Bovine
100%
Zebrafish
0%
Xenopus
0%
High similarity Medium similarity Low similarity No similarity
P42345 as Substrate
Site PTM Type Enzyme
M1 Acetylation
K42 Ubiquitination
K84 Ubiquitination
S92 Phosphorylation
T102 Phosphorylation
Y110 Phosphorylation
K128 Ubiquitination
K230 Ubiquitination
K243 Ubiquitination
K251 Ubiquitination
K298 Ubiquitination
K301 Ubiquitination
T308 Phosphorylation
K309 Ubiquitination
T314 Phosphorylation
K369 Ubiquitination
K379 Ubiquitination
K384 Ubiquitination
K449 Ubiquitination
K533 Ubiquitination
S567 Phosphorylation
K616 Ubiquitination
T631 Phosphorylation
T665 Phosphorylation
S719 Phosphorylation
K777 Ubiquitination
Y861 Phosphorylation
T880 Phosphorylation
K898 Ubiquitination
K900 Ubiquitination
S909 Phosphorylation
S916 Phosphorylation
S918 Phosphorylation
S1131 Phosphorylation
K1133 Ubiquitination
T1162 Phosphorylation
S1166 Phosphorylation
S1171 Phosphorylation
T1172 Phosphorylation
K1187 Ubiquitination
Y1188 Phosphorylation
K1197 Ubiquitination
K1218 Acetylation
K1218 Ubiquitination
Y1232 Phosphorylation
K1256 Acetylation
K1256 Ubiquitination
K1257 Ubiquitination
S1261 Phosphorylation
T1262 Phosphorylation
K1267 Ubiquitination
S1288 Phosphorylation
K1293 Ubiquitination
S1297 Phosphorylation
S1299 Phosphorylation
K1395 Ubiquitination
K1400 Ubiquitination
K1406 Ubiquitination
S1415 Phosphorylation O15111 (CHUK)
S1418 Phosphorylation
K1465 Ubiquitination
K1471 Ubiquitination
K1500 Ubiquitination
T1502 Phosphorylation
K1511 Ubiquitination
K1566 Ubiquitination
K1635 Ubiquitination
K1655 Ubiquitination
K1662 Ubiquitination
K1745 Ubiquitination
Y1804 Phosphorylation
S1821 Phosphorylation
S1847 Phosphorylation
S1849 Phosphorylation
S1859 Phosphorylation
T1870 Phosphorylation
S1874 Phosphorylation
T1876 Phosphorylation
Y1880 Phosphorylation
S1893 Phosphorylation
T1948 Phosphorylation
K1993 Ubiquitination
K2045 Ubiquitination
K2066 Ubiquitination
S2069 Phosphorylation
S2155 Phosphorylation
S2159 Phosphorylation
T2164 Phosphorylation
K2166 Ubiquitination
T2173 Phosphorylation
K2218 Ubiquitination
K2301 Ubiquitination
K2370 Ubiquitination
T2380 Phosphorylation
T2434 Phosphorylation
T2436 Phosphorylation
S2442 Phosphorylation
T2444 Phosphorylation
T2446 Phosphorylation Q15418 (RPS6KA1) , P23443 (RPS6KB1) , Q13131 (PRKAA1) , P31749 (AKT1)
S2448 Phosphorylation P23443 (RPS6KB1) , P31749 (AKT1) , Q15418 (RPS6KA1)
Y2449 Phosphorylation
S2450 Phosphorylation
S2454 Phosphorylation P42345 (MTOR)
T2471 Phosphorylation
T2473 Phosphorylation P42345 (MTOR)
T2474 Phosphorylation P42345 (MTOR)
S2478 Phosphorylation P42345 (MTOR)
S2481 Phosphorylation P42345 (MTOR)
K2489 Ubiquitination
K2496 Ubiquitination
P42345 as PTM Enzyme
Substrate Site Source
O00141 (SGK1) S422 Uniprot
O00418 (EEF2K) S72 Uniprot
O00418 (EEF2K) S74 Uniprot
O75179 (ANKRD17) S2045 Uniprot
O75179 (ANKRD17) S2047 Uniprot
O75385 (ULK1) S638 Uniprot
O75385 (ULK1) S758 Uniprot
O95747 (OXSR1) S339 Uniprot
O95817 (BAG3) T285 Uniprot
O95817 (BAG3) S289 Uniprot
O96018 (APBA3) T5 Uniprot
O96018 (APBA3) S7 Uniprot
P01106 (MYC) S62 Uniprot
P03372 (ESR1) S104 Uniprot
P03372 (ESR1) S106 Uniprot
P04198 (MYCN) S62 Uniprot
P19484 (TFEB) S122 Uniprot
P19484 (TFEB) S142 Uniprot
P19484 (TFEB) S211 Uniprot
P23443-2 (RPS6KB1) T389 Uniprot
P23443 (RPS6KB1) T390 Uniprot
P23443 (RPS6KB1) S394 Uniprot
P23443 (RPS6KB1) T412 Uniprot
P23443 (RPS6KB1) S434 Uniprot
P23443 (RPS6KB1) S447 Uniprot
P26358 (DNMT1) S714 Uniprot
P31749 (AKT1) T450 Uniprot
P31749 (AKT1) S473 Uniprot
P35568 (IRS1) S307 Uniprot
P40763 (STAT3) S727 Uniprot
P42345 (MTOR) S2454 Uniprot
P42345 (MTOR) T2473 Uniprot
P42345 (MTOR) T2474 Uniprot
P42345 (MTOR) S2478 Uniprot
P42345 (MTOR) S2481 Uniprot
P51397 (DAP) S51 Uniprot
P55199 (ELL) S309 Uniprot
Q00613 (HSF1) S326 Uniprot
Q13322 (GRB10) T155 Uniprot
Q13322 (GRB10) S428 Uniprot
Q13322 (GRB10) S476 Uniprot
Q13541 (EIF4EBP1) T36 Uniprot
Q13541 (EIF4EBP1) T37 Uniprot
Q13541 (EIF4EBP1) T41 Uniprot
Q13541 (EIF4EBP1) S44 Uniprot
Q13541 (EIF4EBP1) T45 Uniprot
Q13541 (EIF4EBP1) T46 Uniprot
Q13541 (EIF4EBP1) S65 Uniprot
Q13541 (EIF4EBP1) T70 Uniprot
Q13541 (EIF4EBP1) S83 Uniprot
Q13541 (EIF4EBP1) S101 Uniprot
Q14693 (LPIN1) S106 Uniprot
Q14693 (LPIN1) S438 Uniprot
Q5T4S7 (UBR4) S2932 Uniprot
Q641Q2 (WASHC2A) S700 Uniprot
Q641Q2 (WASHC2A) S704 Uniprot
Q6PKG0 (LARP1) S766 Uniprot
Q6PKG0 (LARP1) S774 Uniprot
Q86TB9 (PATL1) S179 Uniprot
Q86TB9 (PATL1) S184 Uniprot
Q8IYB3 (SRRM1) T572 Uniprot
Q8IYB3 (SRRM1) T574 Uniprot
Q8N122 (RPTOR) S855 Uniprot
Q8N122 (RPTOR) S859 Uniprot
Q8N122 (RPTOR) S863 Uniprot
Q8TB45 (DEPTOR) S265 Uniprot
Q8TB45 (DEPTOR) S286 Uniprot
Q8TB45 (DEPTOR) S293 Uniprot
Q8TB45 (DEPTOR) T295 Uniprot
Q8TB45 (DEPTOR) S299 Uniprot
Q96B36 (AKT1S1) S183 Uniprot
Q96B36 (AKT1S1) S221 Uniprot
Q9BPZ7 (MAPKAP1) S260 Uniprot
Q9C0C7 (AMBRA1) S52 Uniprot
Q9H063 (MAF1) S60 Uniprot
Q9H063 (MAF1) S68 Uniprot
Q9H063 (MAF1) S75 Uniprot
Q9H1K1 (ISCU) S14 Uniprot
Q9H4A3 (WNK1) S2032 Uniprot
Q9H5H4 (ZNF768) S139 Uniprot
Q9H8M2 (BRD9) S588 Uniprot
Q9NQG5 (RPRD1B) S166 Uniprot
Q9P2Y5 (UVRAG) S550 Uniprot
Q9P2Y5 (UVRAG) S571 Uniprot
Q9UBS0-1 (RPS6KB2) T228 Uniprot
Q9UBS0-1 (RPS6KB2) S370 Uniprot
Q9UBS0 (RPS6KB2) T388 Uniprot
Q9UQ35 (SRRM2) S1318 Uniprot
Q9UQ35 (SRRM2) S1326 Uniprot
Q9UQ35 (SRRM2) S1329 Uniprot
Q9Y2J4 (AMOTL2) S759 Uniprot
Q9Y6W6 (DUSP10) S224 Uniprot
Q9Y6W6 (DUSP10) S230 Uniprot
IMPORTANT: For western blots, incubate membrane with diluted antibody in 5% w/v milk , 1X TBS, 0.1% Tween®20 at 4°C with gentle shaking, overnight.