Product: Caspase 3 Antibody
Catalog: AF6311
Source: Rabbit
Application: WB, IHC, IF/ICC, ELISA(peptide)
Reactivity: Human, Mouse, Rat, Bovine
Prediction: Pig, Bovine, Horse, Sheep, Rabbit, Dog
Mol.Wt.: 37kD; 32kD(Calculated).
Uniprot: P42574
RRID: AB_2835170

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:200, ELISA(peptide) 1:20000-1:40000
*The optimal dilutions should be determined by the end user.
Reactivity:
Human,Mouse,Rat,Bovine
Prediction:
Pig(86%), Horse(86%), Sheep(100%), Rabbit(100%), Dog(100%)
Clonality:
Polyclonal
Specificity:
Caspase 3 Antibody detects endogenous levels of total Caspase 3.
RRID:
AB_2835170
Cite Format: Affinity Biosciences Cat# AF6311, RRID:AB_2835170.
Purification:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

A830040C14Rik; Apopain; CASP-3; CASP3; CASP3_HUMAN; Casp3a; Caspase 3; Caspase 3, apoptosis-related cysteine peptidase; Caspase 3, apoptosis-related cysteine protease; Caspase 3, apoptosis-related cysteine protease a; Caspase-3 subunit p12; CC3; CPP-32; CPP32; CPP32B; Cysteine protease CPP32; EC 3.4.22.56; LICE; mldy; OTTHUMP00000165052; OTTHUMP00000165053; OTTHUMP00000165054; PARP cleavage protease; Procaspase3; protein Yama; SCA 1; SCA-1; SREBP cleavage activity 1; Yama;

Immunogens

Immunogen:
Uniprot:
Gene(ID):
Expression:
P42574 CASP3_HUMAN:

Highly expressed in lung, spleen, heart, liver and kidney. Moderate levels in brain and skeletal muscle, and low in testis. Also found in many cell lines, highest expression in cells of the immune system.

Description:
This gene encodes a protein which is a member of the cysteine-aspartic acid protease (caspase) family. Sequential activation of caspases plays a central role in the execution-phase of cell apoptosis. Caspases exist as inactive proenzymes which undergo proteolytic processing at conserved aspartic residues to produce 2 subunits, large and small, that dimerize to form the active enzyme.
Sequence:
MENTENSVDSKSIKNLEPKIIHGSESMDSGISLDNSYKMDYPEMGLCIIINNKNFHKSTGMTSRSGTDVDAANLRETFRNLKYEVRNKNDLTREEIVELMRDVSKEDHSKRSSFVCVLLSHGEEGIIFGTNGPVDLKKITNFFRGDRCRSLTGKPKLFIIQACRGTELDCGIETDSGVDDDMACHKIPVEADFLYAYSTAPGYYSWRNSKDGSWFIQSLCAMLKQYADKLEFMHILTRVNRKVATEFESFSFDATFHAKKQIPCIVSMLTKELYFYH

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Bovine
100
Sheep
100
Dog
100
Rabbit
100
Pig
86
Horse
86
Chicken
75
Xenopus
63
Zebrafish
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P42574 As Substrate

Site PTM Type Enzyme
M1 Acetylation
T4 Phosphorylation
S7 Phosphorylation
S10 Phosphorylation
K11 Acetylation
K11 Ubiquitination
S12 Phosphorylation
K14 Ubiquitination
K19 Ubiquitination
S24 Phosphorylation
S26 Phosphorylation
S29 Phosphorylation
Y41 Phosphorylation
K57 Ubiquitination
S65 Phosphorylation
T67 Phosphorylation
K82 Acetylation
K82 Ubiquitination
K88 Ubiquitination
K105 Ubiquitination
K138 Ubiquitination
S150 Phosphorylation Q16539 (MAPK14)
T152 Phosphorylation
C163 S-Nitrosylation
T174 Phosphorylation
S176 Phosphorylation
K210 Ubiquitination
K229 Ubiquitination
S249 Phosphorylation
K260 Ubiquitination
T270 Phosphorylation

Research Backgrounds

Function:

Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage.

PTMs:

Cleavage by granzyme B, caspase-6, caspase-8 and caspase-10 generates the two active subunits. Additional processing of the propeptides is likely due to the autocatalytic activity of the activated protease. Active heterodimers between the small subunit of caspase-7 protease and the large subunit of caspase-3 also occur and vice versa.

S-nitrosylated on its catalytic site cysteine in unstimulated human cell lines and denitrosylated upon activation of the Fas apoptotic pathway, associated with an increase in intracellular caspase activity. Fas therefore activates caspase-3 not only by inducing the cleavage of the caspase zymogen to its active subunits, but also by stimulating the denitrosylation of its active site thiol.

Subcellular Location:

Cytoplasm.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Tissue Specificity:

Highly expressed in lung, spleen, heart, liver and kidney. Moderate levels in brain and skeletal muscle, and low in testis. Also found in many cell lines, highest expression in cells of the immune system.

Subunit Structure:

Heterotetramer that consists of two anti-parallel arranged heterodimers, each one formed by a 17 kDa (p17) and a 12 kDa (p12) subunit. Interacts with BIRC6/bruce.

Family&Domains:

Belongs to the peptidase C14A family.

Research Fields

· Cellular Processes > Cell growth and death > p53 signaling pathway.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis.   (View pathway)

· Cellular Processes > Cell growth and death > Apoptosis - multiple species.   (View pathway)

· Environmental Information Processing > Signal transduction > MAPK signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > TNF signaling pathway.   (View pathway)

· Human Diseases > Drug resistance: Antineoplastic > Platinum drug resistance.

· Human Diseases > Endocrine and metabolic diseases > Non-alcoholic fatty liver disease (NAFLD).

· Human Diseases > Neurodegenerative diseases > Alzheimer's disease.

· Human Diseases > Neurodegenerative diseases > Parkinson's disease.

· Human Diseases > Neurodegenerative diseases > Amyotrophic lateral sclerosis (ALS).

· Human Diseases > Neurodegenerative diseases > Huntington's disease.

· Human Diseases > Infectious diseases: Bacterial > Epithelial cell signaling in Helicobacter pylori infection.

· Human Diseases > Infectious diseases: Bacterial > Pertussis.

· Human Diseases > Infectious diseases: Bacterial > Legionellosis.

· Human Diseases > Infectious diseases: Parasitic > Toxoplasmosis.

· Human Diseases > Infectious diseases: Parasitic > Amoebiasis.

· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.

· Human Diseases > Infectious diseases: Viral > Hepatitis B.

· Human Diseases > Infectious diseases: Viral > Human papillomavirus infection.

· Human Diseases > Infectious diseases: Viral > Herpes simplex infection.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Viral carcinogenesis.

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Overview > MicroRNAs in cancer.

· Human Diseases > Cancers: Specific types > Colorectal cancer.   (View pathway)

· Human Diseases > Cancers: Specific types > Small cell lung cancer.   (View pathway)

· Human Diseases > Cardiovascular diseases > Viral myocarditis.

· Organismal Systems > Immune system > Natural killer cell mediated cytotoxicity.   (View pathway)

· Organismal Systems > Immune system > IL-17 signaling pathway.   (View pathway)

· Organismal Systems > Nervous system > Serotonergic synapse.

References

1). Li X et al. Upregulation of BCL-2 by acridone derivative through gene promoter i-motif for alleviating liver damage of NAFLD/NASH. Nucleic Acids Res 2020 Jul 25;gkaa615. (PubMed: 32710621) [IF=19.160]

Application: WB    Species: human    Sample: HepG2

Figure 4. Effect of A22 on anti-apoptosis in 0.5 mM palmitic acid oil (PA) induced cell model. (A) Effect of A22 on cell viability for anti-apoptotic protective effect. (B) Effect of A22 on transcription of BCL-2 and BAX with measurement of mRNA levels. (C) Effect of A22 on protein expressions related with apoptosis (left), which were quantitatively analyzed (right). All the experiments were repeated for three times.

2). Wu Y et al. Precise editing of FGFR3-TACC3 fusion genes with CRISPR-Cas13a in glioblastoma. Mol Ther 2021 Jul 16;S1525-0016(21)00356-7. (PubMed: 34274537) [IF=12.910]

3). Fan H et al. Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1α signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 2021 Apr;40:101856. (PubMed: 33472123) [IF=10.787]

Application: WB    Species: rat    Sample: brain

Fig. 6. Hsp22 regulates PGC1α via AMPK signaling pathway in rats after SAH Beam balance scores, Modified Garcia scores and Brainwater content in various groups. n = 6 per group. (B) Representative photomicrographs of TUNEL staining and quantitative analyses in the indicated groups. n = 4 per group. Scale bar = 100 μm. (C) Typical photomicrographs showing double immunofluorescence staining of PGC1α (green) and NeuN (red) in diverse experimental groups. n = 4 per group. Scale bar = 50 μm. (D) Western blot images and quantitative analyses of p-AMPK/AMPK, PGC1α, Drp1, Nrf1, TFAM, UCP2, Cleaved caspase-3/Caspase-3, Bcl2, Bax, Cytosolic and mitochondrial cytochrome c. n = 6 per group. Bars represent mean ± SD. **P < 0.01, *P < 0.05 vs. Sham group. ##P < 0.01, #P < 0.05 vs. SAH + Vehicle group. &&P < 0.01, &P < 0.05 vs. SAH + hsp22+scramble siRNA. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

4). Wu H et al. LNC473 regulating APAF1 IRES-dependent translation via competitive sponging miR574 and miR15b: Implications in colorectal cancer. Mol Ther Nucleic Acids 2020 Sep 4;21:764-779. (PubMed: 32784109) [IF=10.183]

Application: WB    Species: Human    Sample: HCT116 and SW480 Cells

Figure 6 LNC473-miR574/miR15b-APAF1 Signaling Axis in HCT116 and SW480 Cells (A) IF and ISH combination assay revealing the co-localization of APAF1 protein with included ncRNAs in HCT116 cells. Scale bars, 5 μm. (B and C) The levels of APAF1 mRNA (B) and protein (C) were determined after interfering LNC473 expression in HCT116 and SW480 cells by qPCR and IF assays. Scale bars, 20 μm. (D) The expression of apoptosis-related proteins including APAF1 was detected after interfering LNC473 expression in HCT116 and SW480 cells by western blot assay. (E and F) Rescue experiments showing the APAF1 levels in HCT116 and SW480 cells with exposure to the co-transfection of pcDH-LNC473 vector and miR574-5p or miR15b-5p mimic by qPCR (E) and western blot (F) assays. (G) Pattern diagram of APAF1-CDS and APAF1-IRES-CDS vectors. (H and I) APAF1 protein expression was determined in HCT116 and SW480 cells treated with APAF1-IRES-CDS vector, or pcDH-LNC473 and APAF1-IRES-CD co-transfection by western blot (H) and IF assays (I). Scale bars, 5 μm. (J) The percentage (%) of cell apoptosis in cells upon co-overexpressing APAF1-CDS or APAF1-IRE-CDS and LNC473 as assayed by flow cytometry. All tests were performed at least three times. Data were expressed as mean ± SD. ns (nonsignificant), p > 0.05; ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.

5). Zhu H et al. CircGCN1L1 promotes synoviocyte proliferation and chondrocyte apoptosis by targeting miR-330-3p and TNF-α in TMJ osteoarthritis. Cell Death Dis 2020 Apr 24;11(4):284 (PubMed: 32332704) [IF=9.685]

Application: WB    Species: human    Sample: synovial cells

Fig. 5 MiR-330-3p mediates the function of circGCN1L1 in human TMJ synoviocyte. a The synovial cells from the control patient were transiently transfected with miR-330-3p mimics, miR-330-3p mimic NC, miR-330-3p inhibitor, or miR-330-3p inhibitor NC, respectively. Forty-eight hours later, the levels of MMP13, MMP3, COL2A1, and ADAMTS4 were detected using WB. N = 4 (four independent experiments). b CircGCNL1 with/ without miR-330-3p mimics was transfected into co-cultured synoviocytes. After 2 days of co-culture, proteins were extracted from chondrocytes in the lower chamber, and WB was performed to detect the levels of MMP13, MMP3, COL2A1, ADAMTS4, TNF-α, p65, Bcl-2, Bax, caspase-3, and cleaved caspase-3. N = 4 (four independent experiments). Data are presented as mean ± S.D. One-way ANOVA with Bonferroni test was performed. WB western blotting, NC normal control, MMP matrix metalloproteinase, TNF tumor necrosis factor, Bcl-2 B-cell lymphoma-2, Bax BCL2-associated X, COL2A1 collagen type II alpha 1.

Application: WB    Species: human    Sample: human TMJ synoviocyte

Fig. 5 |MiR-330-3p mediates the function of circGCN1L1 in human TMJ synoviocyte..b CircGCNL1 with/without miR-330-3p mimics was transfected into co-cultured synoviocytes. After 2 days of co-culture, proteins were extracted from chondrocytes in the lower chamber, and WB was performed to detect the levels of MMP13, MMP3, COL2A1, ADAMTS4, TNF-α, p65, Bcl-2, Bax, caspase-3, and cleaved caspase-3. N = 4 (four independent experiments). Data are presented as mean ± S.D. One-way ANOVA with Bonferroni test was performed. WB western blotting, NC normal control, MMP matrix metalloproteinase, TNF tumor necrosis factor, Bcl-2 B-cell lymphoma-2, Bax BCL2-associated X,COL2A1 collagen type II alpha 1.

6). Liu P et al. Cytotoxicity of adducts formed between quercetin and methylglyoxal in PC-12 cells. Food Chem 2021 Aug 1;352:129424. (PubMed: 33706136) [IF=9.231]

Application: WB    Species: Rat    Sample: PC-12 cells

Fig. 5. Effect of treatments of MGO, Que-mono-MGO, and Que-di-MGO on the expression levels of apoptotic markers and components of AKT and Nrf2-HO-1/NQO-1 signaling pathways. Significant differences (p < 0.05) between samples of different treatments are marked with different letters on each column.

7). He Y et al. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic Biol Med 2017 Feb;103:165-176 (PubMed: 27979659) [IF=8.101]

Application: WB    Species: rat    Sample:


8). He Y et al. Quercetin induces autophagy via FOXO1-dependent pathways and autophagy suppression enhances quercetin-induced apoptosis in PASMCs in hypoxia. Free Radic Biol Med 2017 Feb;103:165-176 (PubMed: 27979659) [IF=8.101]

9). Fan H et al. Bacteroides fragilis Strain ZY-312 Defense against Cronobacter sakazakii-Induced Necrotizing Enterocolitis In Vitro and in a Neonatal Rat Model. mSystems 2019 Aug 6;4(4) (PubMed: 31387931) [IF=7.324]

Application: WB    Species: rat    Sample: C. sakazakii-induced

FIG 4| ZY-312 reduces C. sakazakii-induced pyroptosis and apoptosis. (A and B) C. sakazakii-induced programmed cell death in HT-29 was ameliorated by pretreatment with ZY-312. Flow cytometry (A) and fluorescence microscope (B) were used to examine the results of staining of FITC and PI. (C) Western blot analysis shows that ZY-312 suppressed C. sakazakii-induced NEC by modulating apoptosis through caspase-3, Bax, and Bcl-2. -Actin was used as an indicator of protein loading.

10). Guo Z et al. Silica nanoparticles cause spermatogenesis dysfunction in mice via inducing cell cycle arrest and apoptosis. Ecotoxicol Environ Saf 2022 Feb;231:113210. (PubMed: 35051769) [IF=7.129]

Load more

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.