Product: PKD1/2/3/PKC mu Antibody
Catalog: AF6444
Description: Rabbit polyclonal antibody to PKD1/2/3/PKC mu
Application: WB IF/ICC
Reactivity: Human, Mouse, Rat
Prediction: Pig, Zebrafish, Bovine, Horse, Sheep, Rabbit, Chicken
Mol.Wt.: 115kDa; 102kD,97kD,100kD(Calculated).
Uniprot: Q15139 | Q9BZL6 | O94806
RRID: AB_2835268

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
WB 1:500-1:2000, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Pig(100%), Zebrafish(100%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Chicken(100%)
Clonality:
Polyclonal
Specificity:
PKD1/2/3/PKC mu Antibody detects endogenous levels of total PKD1/2/3/PKC mu.
RRID:
AB_2835268
Cite Format: Affinity Biosciences Cat# AF6444, RRID:AB_2835268.
Conjugate:
Unconjugated.
Purification:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

KPCD1_HUMAN; nPKC D1; nPKC mu; nPKC-D1; nPKC-mu; nPKCD1; nPKCmu; PKC; PKC MU; PKCM; PKCmu; PKD 1; PKD; PKD1; PRKCM; PRKD 1; Prkd1; Protein kinase C mu; Protein kinase C mu type; Protein kinase D; Protein kinase D1; Serine/threonine protein kinase D1; Serine/threonine-protein kinase D1; DKFZp586E0820; HSPC187; KPCD2_HUMAN; nPKC D2; nPKC-D2; PKD2; PRKD 2; Prkd2; Protein kinase D2; Serine/threonine protein kinase D2; Serine/threonine-protein kinase D2; EPK 2; EPK2; KPCD3_HUMAN; nPKC nu; nPKC-nu; nPKCnu; nu; PKCnu; PKD 3; PKD3; PRK D3; PRKCN; PRKD 3; Prkd3; Protein kinase C; Protein kinase C nu; Protein kinase C nu type; Protein kinase D3; Protein kinase EPK 2; Protein kinase EPK2; Serine threonine protein kinase; Serine/threonine protein kinase D3; Serine/threonine-protein kinase D3;

Immunogens

Immunogen:

A synthesized peptide derived from human PKD1/2/3/PKC mu, corresponding to a region within the internal amino acids.

Uniprot:
Gene(ID):
Expression:
Q9BZL6 KPCD2_HUMAN:

Widely expressed.

O94806 KPCD3_HUMAN:

Ubiquitous.

Description:
PKD3 a CAMK kinase of the PKD family. An important component of signaling pathways downstream from novel PKC enzymes after B-cell receptor engagement.
Sequence:
MSAPPVLRPPSPLLPVAAAAAAAAAALVPGSGPGPAPFLAPVAAPVGGISFHLQIGLSREPVLLLQDSSGDYSLAHVREMACSIVDQKFPECGFYGMYDKILLFRHDPTSENILQLVKAASDIQEGDLIEVVLSASATFEDFQIRPHALFVHSYRAPAFCDHCGEMLWGLVRQGLKCEGCGLNYHKRCAFKIPNNCSGVRRRRLSNVSLTGVSTIRTSSAELSTSAPDEPLLQKSPSESFIGREKRSNSQSYIGRPIHLDKILMSKVKVPHTFVIHSYTRPTVCQYCKKLLKGLFRQGLQCKDCRFNCHKRCAPKVPNNCLGEVTINGDLLSPGAESDVVMEEGSDDNDSERNSGLMDDMEEAMVQDAEMAMAECQNDSGEMQDPDPDHEDANRTISPSTSNNIPLMRVVQSVKHTKRKSSTVMKEGWMVHYTSKDTLRKRHYWRLDSKCITLFQNDTGSRYYKEIPLSEILSLEPVKTSALIPNGANPHCFEITTANVVYYVGENVVNPSSPSPNNSVLTSGVGADVARMWEIAIQHALMPVIPKGSSVGTGTNLHRDISVSISVSNCQIQENVDISTVYQIFPDEVLGSGQFGIVYGGKHRKTGRDVAIKIIDKLRFPTKQESQLRNEVAILQNLHHPGVVNLECMFETPERVFVVMEKLHGDMLEMILSSEKGRLPEHITKFLITQILVALRHLHFKNIVHCDLKPENVLLASADPFPQVKLCDFGFARIIGEKSFRRSVVGTPAYLAPEVLRNKGYNRSLDMWSVGVIIYVSLSGTFPFNEDEDIHDQIQNAAFMYPPNPWKEISHEAIDLINNLLQVKMRKRYSVDKTLSHPWLQDYQTWLDLRELECKIGERYITHESDDLRWEKYAGEQGLQYPTHLINPSASHSDTPETEETEMKALGERVSIL

MATAPSYPAGLPGSPGPGSPPPPGGLELQSPPPLLPQIPAPGSGVSFHIQIGLTREFVLLPAASELAHVKQLACSIVDQKFPECGFYGLYDKILLFKHDPTSANLLQLVRSSGDIQEGDLVEVVLSASATFEDFQIRPHALTVHSYRAPAFCDHCGEMLFGLVRQGLKCDGCGLNYHKRCAFSIPNNCSGARKRRLSSTSLASGHSVRLGTSESLPCTAEELSRSTTELLPRRPPSSSSSSSASSYTGRPIELDKMLLSKVKVPHTFLIHSYTRPTVCQACKKLLKGLFRQGLQCKDCKFNCHKRCATRVPNDCLGEALINGDVPMEEATDFSEADKSALMDESEDSGVIPGSHSENALHASEEEEGEGGKAQSSLGYIPLMRVVQSVRHTTRKSSTTLREGWVVHYSNKDTLRKRHYWRLDCKCITLFQNNTTNRYYKEIPLSEILTVESAQNFSLVPPGTNPHCFEIVTANATYFVGEMPGGTPGGPSGQGAEAARGWETAIRQALMPVILQDAPSAPGHAPHRQASLSISVSNSQIQENVDIATVYQIFPDEVLGSGQFGVVYGGKHRKTGRDVAVKVIDKLRFPTKQESQLRNEVAILQSLRHPGIVNLECMFETPEKVFVVMEKLHGDMLEMILSSEKGRLPERLTKFLITQILVALRHLHFKNIVHCDLKPENVLLASADPFPQVKLCDFGFARIIGEKSFRRSVVGTPAYLAPEVLLNQGYNRSLDMWSVGVIMYVSLSGTFPFNEDEDINDQIQNAAFMYPASPWSHISAGAIDLINNLLQVKMRKRYSVDKSLSHPWLQEYQTWLDLRELEGKMGERYITHESDDARWEQFAAEHPLPGSGLPTDRDLGGACPPQDHDMQGLAERISVL

MSANNSPPSAQKSVLPTAIPAVLPAASPCSSPKTGLSARLSNGSFSAPSLTNSRGSVHTVSFLLQIGLTRESVTIEAQELSLSAVKDLVCSIVYQKFPECGFFGMYDKILLFRHDMNSENILQLITSADEIHEGDLVEVVLSALATVEDFQIRPHTLYVHSYKAPTFCDYCGEMLWGLVRQGLKCEGCGLNYHKRCAFKIPNNCSGVRKRRLSNVSLPGPGLSVPRPLQPEYVALPSEESHVHQEPSKRIPSWSGRPIWMEKMVMCRVKVPHTFAVHSYTRPTICQYCKRLLKGLFRQGMQCKDCKFNCHKRCASKVPRDCLGEVTFNGEPSSLGTDTDIPMDIDNNDINSDSSRGLDDTEEPSPPEDKMFFLDPSDLDVERDEEAVKTISPSTSNNIPLMRVVQSIKHTKRKSSTMVKEGWMVHYTSRDNLRKRHYWRLDSKCLTLFQNESGSKYYKEIPLSEILRISSPRDFTNISQGSNPHCFEIITDTMVYFVGENNGDSSHNPVLAATGVGLDVAQSWEKAIRQALMPVTPQASVCTSPGQGKDHKDLSTSISVSNCQIQENVDISTVYQIFADEVLGSGQFGIVYGGKHRKTGRDVAIKVIDKMRFPTKQESQLRNEVAILQNLHHPGIVNLECMFETPERVFVVMEKLHGDMLEMILSSEKSRLPERITKFMVTQILVALRNLHFKNIVHCDLKPENVLLASAEPFPQVKLCDFGFARIIGEKSFRRSVVGTPAYLAPEVLRSKGYNRSLDMWSVGVIIYVSLSGTFPFNEDEDINDQIQNAAFMYPPNPWREISGEAIDLINNLLQVKMRKRYSVDKSLSHPWLQDYQTWLDLREFETRIGERYITHESDDARWEIHAYTHNLVYPKHFIMAPNPDDMEEDP

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Pig
100
Horse
100
Bovine
100
Sheep
100
Zebrafish
100
Chicken
100
Rabbit
100
Dog
0
Xenopus
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

Research Backgrounds

Function:

Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of MAPK8/JNK1 and Ras signaling, Golgi membrane integrity and trafficking, cell survival through NF-kappa-B activation, cell migration, cell differentiation by mediating HDAC7 nuclear export, cell proliferation via MAPK1/3 (ERK1/2) signaling, and plays a role in cardiac hypertrophy, VEGFA-induced angiogenesis, genotoxic-induced apoptosis and flagellin-stimulated inflammatory response. Phosphorylates the epidermal growth factor receptor (EGFR) on dual threonine residues, which leads to the suppression of epidermal growth factor (EGF)-induced MAPK8/JNK1 activation and subsequent JUN phosphorylation. Phosphorylates RIN1, inducing RIN1 binding to 14-3-3 proteins YWHAB, YWHAE and YWHAZ and increased competition with RAF1 for binding to GTP-bound form of Ras proteins (NRAS, HRAS and KRAS). Acts downstream of the heterotrimeric G-protein beta/gamma-subunit complex to maintain the structural integrity of the Golgi membranes, and is required for protein transport along the secretory pathway. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane. May act by activating the lipid kinase phosphatidylinositol 4-kinase beta (PI4KB) at the TGN for the local synthesis of phosphorylated inositol lipids, which induces a sequential production of DAG, phosphatidic acid (PA) and lyso-PA (LPA) that are necessary for membrane fission and generation of specific transport carriers to the cell surface. Under oxidative stress, is phosphorylated at Tyr-463 via SRC-ABL1 and contributes to cell survival by activating IKK complex and subsequent nuclear translocation and activation of NFKB1. Involved in cell migration by regulating integrin alpha-5/beta-3 recycling and promoting its recruitment in newly forming focal adhesion. In osteoblast differentiation, mediates the bone morphogenetic protein 2 (BMP2)-induced nuclear export of HDAC7, which results in the inhibition of HDAC7 transcriptional repression of RUNX2. In neurons, plays an important role in neuronal polarity by regulating the biogenesis of TGN-derived dendritic vesicles, and is involved in the maintenance of dendritic arborization and Golgi structure in hippocampal cells. May potentiate mitogenesis induced by the neuropeptide bombesin or vasopressin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression. Plays an important role in the proliferative response induced by low calcium in keratinocytes, through sustained activation of MAPK1/3 (ERK1/2) pathway. Downstream of novel PKC signaling, plays a role in cardiac hypertrophy by phosphorylating HDAC5, which in turn triggers XPO1/CRM1-dependent nuclear export of HDAC5, MEF2A transcriptional activation and induction of downstream target genes that promote myocyte hypertrophy and pathological cardiac remodeling. Mediates cardiac troponin I (TNNI3) phosphorylation at the PKA sites, which results in reduced myofilament calcium sensitivity, and accelerated crossbridge cycling kinetics. The PRKD1-HDAC5 pathway is also involved in angiogenesis by mediating VEGFA-induced specific subset of gene expression, cell migration, and tube formation. In response to VEGFA, is necessary and required for HDAC7 phosphorylation which induces HDAC7 nuclear export and endothelial cell proliferation and migration. During apoptosis induced by cytarabine and other genotoxic agents, PRKD1 is cleaved by caspase-3 at Asp-378, resulting in activation of its kinase function and increased sensitivity of cells to the cytotoxic effects of genotoxic agents. In epithelial cells, is required for transducing flagellin-stimulated inflammatory responses by binding and phosphorylating TLR5, which contributes to MAPK14/p38 activation and production of inflammatory cytokines. May play a role in inflammatory response by mediating activation of NF-kappa-B. May be involved in pain transmission by directly modulating TRPV1 receptor. Plays a role in activated KRAS-mediated stabilization of ZNF304 in colorectal cancer (CRC) cells. Regulates nuclear translocation of transcription factor TFEB in macrophages upon live S.enterica infection (By similarity).

PTMs:

Phosphorylated at Ser-397 and Ser-401 by MAPK13 during regulation of insulin secretion in pancreatic beta cells. Phosphorylated by DAPK1. Phosphorylated at Tyr-95 and by ABL at Tyr-463, which primes the kinase in response to oxidative stress, and promotes a second step activating phosphorylation at Ser-738/Ser-742 by PKRD. Phosphorylated on Ser-910 upon S.enterica infection in macrophages (By similarity).

Subcellular Location:

Cytoplasm. Cell membrane. Golgi apparatus>trans-Golgi network.
Note: Translocation to the cell membrane is required for kinase activation.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Family&Domains:

Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. PKD subfamily.

Function:

Serine/threonine-protein kinase that converts transient diacylglycerol (DAG) signals into prolonged physiological effects downstream of PKC, and is involved in the regulation of cell proliferation via MAPK1/3 (ERK1/2) signaling, oxidative stress-induced NF-kappa-B activation, inhibition of HDAC7 transcriptional repression, signaling downstream of T-cell antigen receptor (TCR) and cytokine production, and plays a role in Golgi membrane trafficking, angiogenesis, secretory granule release and cell adhesion. May potentiate mitogenesis induced by the neuropeptide bombesin by mediating an increase in the duration of MAPK1/3 (ERK1/2) signaling, which leads to accumulation of immediate-early gene products including FOS that stimulate cell cycle progression (By similarity). In response to oxidative stress, is phosphorylated at Tyr-438 and Tyr-717 by ABL1, which leads to the activation of PRKD2 without increasing its catalytic activity, and mediates activation of NF-kappa-B. In response to the activation of the gastrin receptor CCKBR, is phosphorylated at Ser-244 by CSNK1D and CSNK1E, translocates to the nucleus, phosphorylates HDAC7, leading to nuclear export of HDAC7 and inhibition of HDAC7 transcriptional repression of NR4A1/NUR77. Upon TCR stimulation, is activated independently of ZAP70, translocates from the cytoplasm to the nucleus and is required for interleukin-2 (IL2) promoter up-regulation. During adaptive immune responses, is required in peripheral T-lymphocytes for the production of the effector cytokines IL2 and IFNG after TCR engagement and for optimal induction of antibody responses to antigens (By similarity). In epithelial cells stimulated with lysophosphatidic acid (LPA), is activated through a PKC-dependent pathway and mediates LPA-stimulated interleukin-8 (IL8) secretion via a NF-kappa-B-dependent pathway. During TCR-induced T-cell activation, interacts with and is activated by the tyrosine kinase LCK, which results in the activation of the NFAT transcription factors. In the trans-Golgi network (TGN), regulates the fission of transport vesicles that are on their way to the plasma membrane and in polarized cells is involved in the transport of proteins from the TGN to the basolateral membrane. Plays an important role in endothelial cell proliferation and migration prior to angiogenesis, partly through modulation of the expression of KDR/VEGFR2 and FGFR1, two key growth factor receptors involved in angiogenesis. In secretory pathway, is required for the release of chromogranin-A (CHGA)-containing secretory granules from the TGN. Downstream of PRKCA, plays important roles in angiotensin-2-induced monocyte adhesion to endothelial cells. Plays a regulatory role in angiogenesis and tumor growth by phosphorylating a downstream mediator CIB1 isoform 2, resulting in vascular endothelial growth factor A (VEGFA) secretion.

PTMs:

Phosphorylation of Ser-876 correlates with the activation status of the kinase. Ser-706 or/and Ser-710 are probably phosphorylated by PKC. Phosphorylation at Ser-244 by CSNK1D and CSNK1E promotes nuclear localization and substrate targeting. Phosphorylation at Ser-244, Ser-706 and Ser-710 is required for nuclear localization. Phosphorylated at Tyr-438 by ABL1 in response to oxidative stress. Phosphorylated at Tyr-717 by ABL1 specifically in response to oxidative stress; requires prior phosphorylation at Ser-706 or/and Ser-710.

Subcellular Location:

Cytoplasm. Cell membrane. Nucleus. Golgi apparatus>trans-Golgi network.
Note: Translocation to the cell membrane is required for kinase activation. Accumulates in the nucleus upon CK1-mediated phosphorylation after activation of G-protein-coupled receptors. Nuclear accumulation is regulated by blocking nuclear export of active PRKD2 rather than by increasing import.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Tissue Specificity:

Widely expressed.

Family&Domains:

Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. PKD subfamily.

Function:

Converts transient diacylglycerol (DAG) signals into prolonged physiological effects, downstream of PKC. Involved in resistance to oxidative stress (By similarity).

Subcellular Location:

Cytoplasm. Membrane.
Note: Translocation to the cell membrane is required for kinase activation.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Tissue Specificity:

Ubiquitous.

Family&Domains:

Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. PKD subfamily.

Research Fields

· Environmental Information Processing > Signal transduction > Rap1 signaling pathway.   (View pathway)

· Organismal Systems > Endocrine system > Aldosterone synthesis and secretion.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.