Product: RPS3 Antibody
Catalog: DF3684
Description: Rabbit polyclonal antibody to RPS3
Application: WB IHC IF/ICC
Reactivity: Human, Mouse, Rat
Prediction: Pig, Zebrafish, Bovine, Sheep, Rabbit, Dog, Chicken, Xenopus
Mol.Wt.: 30 KD; 27kD(Calculated).
Uniprot: P23396
RRID: AB_2835894

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

WB 1:500-1:1000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Pig(100%), Zebrafish(100%), Bovine(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(100%)
RPS3 Antibody detects endogenous levels of total RPS3.
Cite Format: Affinity Biosciences Cat# DF3684, RRID:AB_2835894.
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.


40S ribosomal protein S3; fb13d09; FLJ26283; FLJ27450; IMR 90 ribosomal protein S3; MGC56088; MGC87870; OTTHUMP00000229804; OTTHUMP00000229805; OTTHUMP00000229874; OTTHUMP00000229877; OTTHUMP00000229878; OTTHUMP00000229879; OTTHUMP00000229880; OTTHUMP00000229882; OTTHUMP00000229883; OTTHUMP00000229886; Ribosomal protein S3; rps3; RS3_HUMAN; S3; wu:fb13d09; zgc:56088;





Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

PTMs - P23396 As Substrate

Site PTM Type Enzyme
A2 Acetylation
S6 Phosphorylation Q05655 (PRKCD)
K7 Ubiquitination
K8 Ubiquitination
K10 Ubiquitination
K18 Sumoylation
K18 Ubiquitination
R27 Methylation
Y34 Phosphorylation
S35 Phosphorylation
T42 Phosphorylation P28482 (MAPK1) , P27361 (MAPK3)
T46 Phosphorylation
K62 Acetylation
K62 Ubiquitination
R64 Methylation
R65 Methylation
R67 Methylation
T70 Phosphorylation P31749 (AKT1)
K75 Acetylation
K75 Ubiquitination
S83 Phosphorylation
Y87 Phosphorylation
K90 Ubiquitination
C97 S-Nitrosylation
S104 Phosphorylation
Y107 Phosphorylation
K108 Acetylation
K108 Ubiquitination
C119 S-Nitrosylation
Y120 Phosphorylation
K132 Ubiquitination
C134 S-Nitrosylation
S139 Phosphorylation
K141 Sumoylation
K141 Ubiquitination
S149 Phosphorylation
K151 Ubiquitination
S160 Phosphorylation
Y166 Phosphorylation
Y167 Phosphorylation
T170 Phosphorylation
K185 Ubiquitination
K187 Ubiquitination
K197 Acetylation
K197 Ubiquitination
K201 Ubiquitination
K202 Ubiquitination
S209 Phosphorylation O14920 (IKBKB)
K214 Acetylation
K214 Sumoylation
K214 Ubiquitination
T220 Phosphorylation P24941 (CDK2)
T221 Phosphorylation P06493 (CDK1) , Q05655 (PRKCD) , P28482 (MAPK1) , P24941 (CDK2)
S224 Phosphorylation
K227 Ubiquitination
K230 Sumoylation
K230 Ubiquitination
T242 Phosphorylation

Research Backgrounds


Involved in translation as a component of the 40S small ribosomal subunit. Has endonuclease activity and plays a role in repair of damaged DNA. Cleaves phosphodiester bonds of DNAs containing altered bases with broad specificity and cleaves supercoiled DNA more efficiently than relaxed DNA. Displays high binding affinity for 7,8-dihydro-8-oxoguanine (8-oxoG), a common DNA lesion caused by reactive oxygen species (ROS). Has also been shown to bind with similar affinity to intact and damaged DNA. Stimulates the N-glycosylase activity of the base excision protein OGG1. Enhances the uracil excision activity of UNG1. Also stimulates the cleavage of the phosphodiester backbone by APEX1. When located in the mitochondrion, reduces cellular ROS levels and mitochondrial DNA damage. Has also been shown to negatively regulate DNA repair in cells exposed to hydrogen peroxide. Plays a role in regulating transcription as part of the NF-kappa-B p65-p50 complex where it binds to the RELA/p65 subunit, enhances binding of the complex to DNA and promotes transcription of target genes. Represses its own translation by binding to its cognate mRNA. Binds to and protects TP53/p53 from MDM2-mediated ubiquitination. Involved in spindle formation and chromosome movement during mitosis by regulating microtubule polymerization. Involved in induction of apoptosis through its role in activation of CASP8. Induces neuronal apoptosis by interacting with the E2F1 transcription factor and acting synergistically with it to up-regulate pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5. Interacts with TRADD following exposure to UV radiation and induces apoptosis by caspase-dependent JNK activation.


Methylation by PRMT1 is required for import into the nucleolus and for ribosome assembly.

Sumoylation by SUMO1 enhances protein stability through increased resistance to proteolysis. Sumoylation occurs at one or more of the three consensus sites, Lys-18, Lys-214 and Lys-230.

Phosphorylation at Thr-221 by CDK1 occurs mainly in G2/M phase. Phosphorylation by PRKCD occurs on a non-ribosomal-associated form which results in translocation of RPS3 to the nucleus and enhances its endonuclease activity. Phosphorylated on Ser-209 by IKKB in response to activation of the NF-kappa-B p65-p50 complex which enhances the association of RPS3 with importin-alpha and mediates the nuclear translocation of RPS3. Phosphorylation by MAPK is required for translocation to the nucleus following exposure of cells to DNA damaging agents such as hydrogen peroxide. Phosphorylation by PKB/AKT mediates RPS3 nuclear translocation, enhances RPS3 endonuclease activity and suppresses RPS3-induced neuronal apoptosis.

Ubiquitinated. This is prevented by interaction with HSP90 which stabilizes the protein. Monoubiquitinated at Lys-214 by ZNF598 when a ribosome has stalled during translation of poly(A) sequences, leading to preclude synthesis of a long poly-lysine tail and initiate the ribosome quality control (RQC) pathway to degrade the potentially detrimental aberrant nascent polypeptide.

Subcellular Location:

Cytoplasm. Nucleus. Nucleus>Nucleolus. Mitochondrion inner membrane>Peripheral membrane protein. Cytoplasm>Cytoskeleton>Spindle.
Note: In normal cells, located mainly in the cytoplasm with small amounts in the nucleus but translocates to the nucleus in cells undergoing apoptosis (By similarity). Nuclear translocation is induced by DNA damaging agents such as hydrogen peroxide (PubMed:17560175). Accumulates in the mitochondrion in response to increased ROS levels (PubMed:23911537). Localizes to the spindle during mitosis (PubMed:23131551). Localized in cytoplasmic mRNP granules containing untranslated mRNAs (PubMed:17289661).

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Subunit Structure:

Component of the 40S small ribosomal subunit. Identified in a IGF2BP1-dependent mRNP granule complex containing untranslated mRNAs. Interacts with HNRPD. Interacts with PRMT1; the interaction methylates RPS3. Interacts with SUMO1; the interaction sumoylates RPS3. Interacts with UBC9. Interacts with CDK1; the interaction phosphorylates RPS3. Interacts with PRKCD; the interaction phosphorylates RPS3. Interacts with PKB/AKT; the interaction phosphorylates RPS3. Interacts with E2F1; the interaction occurs in the absence of nerve growth factor and increases transcription of pro-apoptotic proteins BCL2L11/BIM and HRK/Dp5. Interacts with the base excision repair proteins APEX1 and OGG1; interaction with OGG1 increases OGG1 N-glycosylase activity. Interacts with UNG; the interaction increases the uracil excision activity of UNG1. Interacts with HSP90; the interaction prevents the ubiquitination and proteasome-dependent degradation of RPS3 and is suppressed by increased ROS levels. Interacts with TOM70; the interaction promotes translocation of RPS3 to the mitochondrion. Interacts (via N-terminus) with RELA (via N-terminus); the interaction enhances the DNA-binding activity of the NF-kappa-B p65-p50 complex. Interacts with NFKBIA; the interaction is direct and may bridge the interaction between RPS3 and RELA. Interacts with IKKB; the interaction phosphorylates RPS3 and enhances its translocation to the nucleus. Interacts (via KH domain) with MDM2 and TP53. Interacts with TRADD. Interacts (via N-terminus) with E.coli O157:H7 (strain EDL933) nleH1 and nleH2; the interaction with nleH1 inhibits phosphorylation by IKKB, reduces RPS3 nuclear abundance and inhibits transcriptional activation by the NF-kappa-B p65-p50 complex. Identified in a HCV IRES-mediated translation complex, at least composed of EIF3C, IGF2BP1, RPS3 and HCV RNA-replicon. Interacts with CRY1 (By similarity).


Belongs to the universal ribosomal protein uS3 family.

Research Fields

· Genetic Information Processing > Translation > Ribosome.

Restrictive clause


Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.