Product: CaMKII alpha/delta Antibody
Catalog: AF6493
Description: Rabbit polyclonal antibody to CaMKII alpha/delta
Application: WB IHC IF/ICC
Cited expt.: WB
Reactivity: Human, Mouse, Rat
Prediction: Zebrafish, Bovine, Horse, Sheep, Rabbit, Dog, Chicken, Xenopus
Mol.Wt.: 50kDa; 54kD,56kD(Calculated).
Uniprot: Q9UQM7 | Q13557
RRID: AB_2835304

View similar products>>

   Size Price Inventory
 100ul $280 In stock
 200ul $350 In stock

Lead Time: Same day delivery

For pricing and ordering contact:
Local distributors

Product Info

Source:
Rabbit
Application:
WB 1:500-1:2000, IHC 1:50-1:200, IF/ICC 1:100-1:500
*The optimal dilutions should be determined by the end user.
*Tips:

WB: For western blot detection of denatured protein samples. IHC: For immunohistochemical detection of paraffin sections (IHC-p) or frozen sections (IHC-f) of tissue samples. IF/ICC: For immunofluorescence detection of cell samples. ELISA(peptide): For ELISA detection of antigenic peptide.

Reactivity:
Human,Mouse,Rat
Prediction:
Zebrafish(88%), Bovine(100%), Horse(100%), Sheep(100%), Rabbit(100%), Dog(100%), Chicken(100%), Xenopus(88%)
Clonality:
Polyclonal
Specificity:
CaMK2 alpha/delta Antibody detects endogenous levels of total CaMK2 alpha/delta.
RRID:
AB_2835304
Cite Format: Affinity Biosciences Cat# AF6493, RRID:AB_2835304.
Conjugate:
Unconjugated.
Purification:
The antiserum was purified by peptide affinity chromatography using SulfoLink™ Coupling Resin (Thermo Fisher Scientific).
Storage:
Rabbit IgG in phosphate buffered saline , pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol. Store at -20 °C. Stable for 12 months from date of receipt.
Alias:

Fold/Unfold

Alpha CaMKII; Calcium calmodulin dependent protein kinase II; Calcium/calmodulin dependent protein kinase II alpha B subunit; Calcium/calmodulin dependent protein kinase type II alpha chain; Calcium/calmodulin-dependent protein kinase (CaM kinase) II alpha; Calcium/calmodulin-dependent protein kinase II alpha; Calcium/calmodulin-dependent protein kinase II-alpha; Calcium/calmodulin-dependent protein kinase type II subunit alpha; Calcium/calmodulin-dependent protein kinase type IIA; CaM kinase II alpha chain; CaM kinase II alpha subunit; CaM kinase II subunit alpha; CaMK II alpha subunit; CaMK-II subunit alpha; Camk2a; CAMKA; CaMKII; CaMKIINalpha; EC 2.7.11.17; KCC2A_HUMAN; KIAA0968; MGC123320; MGC139375; MGC155201; mKIAA0968; PK2CDD; PKCCD; R74975; zgc:112538; zgc:123320; Calcium / calmodulin dependent protein kinase 2 delta; Calcium / calmodulin dependent protein kinase II delta; calcium/calmodulin-dependent protein kinase (CaM kinase) II delta; calcium/calmodulin-dependent protein kinase type II delta chain; Calcium/calmodulin-dependent protein kinase type II subunit delta; CAM kinase 2 delta; CAM kinase II delta; CaM kinase II delta subunit; CaM kinase II subunit delta; CaM-kinase II delta chain; CAMK 2d; CaMK-II delta subunit; CaMK-II subunit delta; CAMK2D; CAMKD; CAMKI; KCC2D_HUMAN; RATCAMKI;

Immunogens

Immunogen:

A synthesized peptide derived from human CaMK2 alpha/delta, corresponding to a region within the internal amino acids.

Uniprot:
Gene(ID):
Expression:
Q13557 KCC2D_HUMAN:

Expressed in cardiac muscle and skeletal muscle. Isoform Delta 3, isoform Delta 2, isoform Delta 8 and isoform Delta 9 are expressed in cardiac muscle. Isoform Delta 11 is expressed in skeletal muscle.

Description:
CaMK2-delta a protein kinase of the CAMK2 family. A prominent kinase in the central nervous system that may function in long-term potentiation and neurotransmitter release. Member of the NMDAR signaling complex in excitatory synapses that may regulate NMDAR-dependent potentiation of the AMPAR and synaptic plasticity.
Sequence:
MATITCTRFTEEYQLFEELGKGAFSVVRRCVKVLAGQEYAAKIINTKKLSARDHQKLEREARICRLLKHPNIVRLHDSISEEGHHYLIFDLVTGGELFEDIVAREYYSEADASHCIQQILEAVLHCHQMGVVHRDLKPENLLLASKLKGAAVKLADFGLAIEVEGEQQAWFGFAGTPGYLSPEVLRKDPYGKPVDLWACGVILYILLVGYPPFWDEDQHRLYQQIKAGAYDFPSPEWDTVTPEAKDLINKMLTINPSKRITAAEALKHPWISHRSTVASCMHRQETVDCLKKFNARRKLKGAILTTMLATRNFSGGKSGGNKKSDGVKESSESTNTTIEDEDTKVRKQEIIKVTEQLIEAISNGDFESYTKMCDPGMTAFEPEALGNLVEGLDFHRFYFENLWSRNSKPVHTTILNPHIHLMGDESACIAYIRITQYLDAGGIPRTAQSEETRVWHRRDGKWQIVHFHRSGAPSVLPH

MASTTTCTRFTDEYQLFEELGKGAFSVVRRCMKIPTGQEYAAKIINTKKLSARDHQKLEREARICRLLKHPNIVRLHDSISEEGFHYLVFDLVTGGELFEDIVAREYYSEADASHCIQQILESVNHCHLNGIVHRDLKPENLLLASKSKGAAVKLADFGLAIEVQGDQQAWFGFAGTPGYLSPEVLRKDPYGKPVDMWACGVILYILLVGYPPFWDEDQHRLYQQIKAGAYDFPSPEWDTVTPEAKDLINKMLTINPAKRITASEALKHPWICQRSTVASMMHRQETVDCLKKFNARRKLKGAILTTMLATRNFSAAKSLLKKPDGVKESTESSNTTIEDEDVKARKQEIIKVTEQLIEAINNGDFEAYTKICDPGLTAFEPEALGNLVEGMDFHRFYFENALSKSNKPIHTIILNPHVHLVGDDAACIAYIRLTQYMDGSGMPKTMQSEETRVWHRRDGKWQNVHFHRSGSPTVPIKPPCIPNGKENFSGGTSLWQNI

Predictions

Predictions:

Score>80(red) has high confidence and is suggested to be used for WB detection. *The prediction model is mainly based on the alignment of immunogen sequences, the results are for reference only, not as the basis of quality assurance.

Species
Results
Score
Horse
100
Bovine
100
Sheep
100
Dog
100
Chicken
100
Rabbit
100
Xenopus
88
Zebrafish
88
Pig
0
Model Confidence:
High(score>80) Medium(80>score>50) Low(score<50) No confidence

Research Backgrounds

Function:

Calcium/calmodulin-dependent protein kinase that functions autonomously after Ca(2+)/calmodulin-binding and autophosphorylation, and is involved in synaptic plasticity, neurotransmitter release and long-term potentiation. Member of the NMDAR signaling complex in excitatory synapses, it regulates NMDAR-dependent potentiation of the AMPAR and therefore excitatory synaptic transmission (By similarity). Regulates dendritic spine development. Also regulates the migration of developing neurons. Phosphorylates the transcription factor FOXO3 to activate its transcriptional activity.

PTMs:

Autophosphorylation of Thr-286 following activation by Ca(2+)/calmodulin. Phosphorylation of Thr-286 locks the kinase into an activated state.

Subcellular Location:

Cell junction>Synapse. Cell junction>Synapse>Postsynaptic density. Cell projection>Dendritic spine. Cell projection>Dendrite.
Note: Postsynaptic lipid rafts.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Family&Domains:

Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. CaMK subfamily.

Function:

Calcium/calmodulin-dependent protein kinase involved in the regulation of Ca(2+) homeostatis and excitation-contraction coupling (ECC) in heart by targeting ion channels, transporters and accessory proteins involved in Ca(2+) influx into the myocyte, Ca(2+) release from the sarcoplasmic reticulum (SR), SR Ca(2+) uptake and Na(+) and K(+) channel transport. Targets also transcription factors and signaling molecules to regulate heart function. In its activated form, is involved in the pathogenesis of dilated cardiomyopathy and heart failure. Contributes to cardiac decompensation and heart failure by regulating SR Ca(2+) release via direct phosphorylation of RYR2 Ca(2+) channel on 'Ser-2808'. In the nucleus, phosphorylates the MEF2 repressor HDAC4, promoting its nuclear export and binding to 14-3-3 protein, and expression of MEF2 and genes involved in the hypertrophic program. Is essential for left ventricular remodeling responses to myocardial infarction. In pathological myocardial remodeling acts downstream of the beta adrenergic receptor signaling cascade to regulate key proteins involved in ECC. Regulates Ca(2+) influx to myocytes by binding and phosphorylating the L-type Ca(2+) channel subunit beta-2 CACNB2. In addition to Ca(2+) channels, can target and regulate the cardiac sarcolemmal Na(+) channel Nav1.5/SCN5A and the K+ channel Kv4.3/KCND3, which contribute to arrhythmogenesis in heart failure. Phosphorylates phospholamban (PLN/PLB), an endogenous inhibitor of SERCA2A/ATP2A2, contributing to the enhancement of SR Ca(2+) uptake that may be important in frequency-dependent acceleration of relaxation (FDAR) and maintenance of contractile function during acidosis. May participate in the modulation of skeletal muscle function in response to exercise, by regulating SR Ca(2+) transport through phosphorylation of PLN/PLB and triadin, a ryanodine receptor-coupling factor.

PTMs:

Autophosphorylation of Thr-287 following activation by Ca(2+)/calmodulin. Phosphorylation of Thr-287 locks the kinase into an activated state.

Subcellular Location:

Cell membrane>Sarcolemma>Peripheral membrane protein>Cytoplasmic side. Sarcoplasmic reticulum membrane>Peripheral membrane protein>Cytoplasmic side.

Extracellular region or secreted Cytosol Plasma membrane Cytoskeleton Lysosome Endosome Peroxisome ER Golgi apparatus Nucleus Mitochondrion Manual annotation Automatic computational assertionSubcellular location
Tissue Specificity:

Expressed in cardiac muscle and skeletal muscle. Isoform Delta 3, isoform Delta 2, isoform Delta 8 and isoform Delta 9 are expressed in cardiac muscle. Isoform Delta 11 is expressed in skeletal muscle.

Family&Domains:

The CAMK2 protein kinases contain a unique C-terminal subunit association domain responsible for oligomerization.

Belongs to the protein kinase superfamily. CAMK Ser/Thr protein kinase family. CaMK subfamily.

Research Fields

· Cellular Processes > Cell growth and death > Oocyte meiosis.   (View pathway)

· Cellular Processes > Cell growth and death > Necroptosis.   (View pathway)

· Environmental Information Processing > Signal transduction > ErbB signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Calcium signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > cAMP signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > HIF-1 signaling pathway.   (View pathway)

· Environmental Information Processing > Signal transduction > Wnt signaling pathway.   (View pathway)

· Human Diseases > Substance dependence > Amphetamine addiction.

· Human Diseases > Infectious diseases: Bacterial > Tuberculosis.

· Human Diseases > Cancers: Overview > Pathways in cancer.   (View pathway)

· Human Diseases > Cancers: Overview > Proteoglycans in cancer.

· Human Diseases > Cancers: Specific types > Glioma.   (View pathway)

· Organismal Systems > Circulatory system > Adrenergic signaling in cardiomyocytes.   (View pathway)

· Organismal Systems > Development > Axon guidance.   (View pathway)

· Organismal Systems > Environmental adaptation > Circadian entrainment.

· Organismal Systems > Nervous system > Long-term potentiation.

· Organismal Systems > Nervous system > Neurotrophin signaling pathway.   (View pathway)

· Organismal Systems > Nervous system > Cholinergic synapse.

· Organismal Systems > Nervous system > Dopaminergic synapse.

· Organismal Systems > Sensory system > Olfactory transduction.

· Organismal Systems > Sensory system > Inflammatory mediator regulation of TRP channels.   (View pathway)

· Organismal Systems > Endocrine system > Insulin secretion.   (View pathway)

· Organismal Systems > Endocrine system > Melanogenesis.

· Organismal Systems > Endocrine system > Oxytocin signaling pathway.

· Organismal Systems > Endocrine system > Glucagon signaling pathway.

· Organismal Systems > Endocrine system > Aldosterone synthesis and secretion.

· Organismal Systems > Digestive system > Gastric acid secretion.

References

1). Sleep Deprivation Induces Gut Damage via Ferroptosis. Journal of pineal research, 2024 (PubMed: 38975671) [IF=8.3]

2). lncRNA-ZFAS1 induces mitochondria-mediated apoptosis by causing cytosolic Ca2+ overload in myocardial infarction mice model. Cell Death & Disease, 2019 (PubMed: 31819041) [IF=8.1]

Application: WB    Species: Mice    Sample: Cardiac tissue

As shown in Fig. S6, ZFAS1 had no obvious effects on the expression of P-CaMKII, CaMKII, or Cx43 protein levels. The calcium homeostasis of the TG was also assessed by optical-mapping techniques.

3). Antiarrhythmic effects of ginsenoside Rg2 on calcium chloride–induced arrhythmias without oral toxicity. Journal of Ginseng Research, 2020 (PubMed: 32913401) [IF=6.8]

4). BmK NT1-induced neurotoxicity is mediated by PKC/CaMKⅡ-dependent ERK1/2 and p38 activation in primary cultured cerebellar granule cells. Toxicology, 2019 (PubMed: 30940546) [IF=4.8]

5). Sinomenine Protects Against Morphine Dependence through the NMDAR1/CAMKII/CREB Pathway: A Possible Role of Astrocyte-Derived Exosomes. MOLECULES, 2018 (PubMed: 30227624) [IF=4.6]

Application: WB    Species: mouse    Sample: SH-SY5Y cells

Figure 6. |Effects of astrocyte-derived exosomes on morphine-treated SH-SY5Y cells and subsequent intervention by sinomenine.(F–H) NMDAR agonist reversed the inhibitory effect of Sino-exo on p-NMDAR1/NMDAR1, p-CAMKII/CAMKII, and p-CREB/CREB (n = 3). Ctl-exo:exosomes extracted from cultured primary astrocytes; mor-exo: exosomes extracted from cultured primary astrocytes treated with 100 µM morphine for 48 h; Sino-exo: exosomes extracted from cultured primary astrocytes treated with 100 µM morphine and 200 µMsinomenine for 48 h. # p < 0.05, ## p < 0.01 vs. ctl-exo; ∆ p < 0.05, ∆∆ p < 0.01 vs. mor-exo; * p < 0.05, ** p < 0.01 vs. Sino-exo.

6). Cobratoxin Alleviates Cancer-Induced Bone Pain in Rats via Inhibiting CaMKII Signaling Pathway after Acting on M4 Muscarinic Cholinergic Receptors. ACS Chemical Neuroscience, 2022 (PubMed: 35420768) [IF=4.1]

7). Inhibition of Acid Sensing Ion Channel 3 Aggravates Seizures by Regulating NMDAR Function. NEUROCHEMICAL RESEARCH, 2018 (PubMed: 29736613) [IF=3.7]

8). In vivo toxicity assessment of four types of graphene quantum dots (GQDs) using mRNA sequencing. Toxicology Letters, 2022 (PubMed: 35643291) [IF=2.9]

9). Cypermethrin induces Sertoli cell apoptosis through mitochondrial pathway associated with calcium. Toxicology Research, 2021 (PubMed: 34484665) [IF=2.2]

Application: WB    Species: Mice    Sample: TM4 cells

Figure 4 Effects of cypermethrin on Ca2+/CaM/CaMKII pathway. TM4 cells were treated with 0 μM, 10 μM, 20 μM, 40 μM and 80 μM of cypermethrin. (A) Protein expression of CaM. (B) Protein expressions of phosphorylated CaMKII and CaMKII. Data were expressed as means ±SD (n = 3). *P < 0.05 compared with control group.

10). Calcium Channel Blocker Nifedipine Suppresses Colorectal Cancer Progression and Immune Escape by Preventing NFAT2 Nuclear Translocation. , 2020

Application: WB    Species: Human    Sample: SW620 cells

Figure 3. The Calcium-Dependent Gene NFAT2 Is Activated through Dephosphorylation and Transportation to the Nucleus (A) IF assay was used to visualize the alteration of NFAT2 in SW620 cells treated with NIFE (10 mM) or the NFAT2 vector. (B) IF assay was used to visualize the alteration in NFAT2 in SW620 cells treated with NFAT2 short hairpin RNA (shRNA) or BAY (10 mM). (C) IF assays were performed with subcutaneous tumor slices from mice treated with NIFE or BAY to visualize the subcellular localization of NFAT2. (D) After treating SW620 cells with NIFE or BAY, IF assays were used to visualize the subcellular localization of NFAT2 and phosphorylated NFAT2 (p-NFAT2). (E) IF assay was used to visualize the Ca2+ level and NFAT2 or p-NFAT2 level in normal tissues and tumors. Images in the same line were from the same magnification. Blue light represents the basic light of Ca2+, whereas green light represents the elevated Ca2+ levels. Red light represents the level of NFAT2. (F) Upper panel: detection of total protein changes in SW620 cells after treatment with NIFE or transfection with siRNA-CAMK-II by WB. Lower panel: proteins contained in cytoplasmic and nuclear compartments of SW620 cells after treatment with NIFE or BAY were separated for WB analysis. (G) After treating SW620 cells with CsA (10 mM), VIVIT (10 mM), and FK506 (10 ng/mL) and subsequently separating the nuclear and cytoplasmic proteins, WB analysis was used to detect the level of NFAT2 in the nucleus and p-NFAT2 in the cytoplasm. (H) Representative images of IHC staining analysis of NFAT2 expression in CRC tissues and adjacent nontumor tissues. The bar chart on the right represents the percentage of high and low NFAT2 expression cases in normal and CRC tissues. (I) IHC analysis of NFAT2 and p-NFAT2 expression in nonmetastatic and metastatic CRC tissues. The bar chart on the right represents the percentage of high and low NFAT2 or p-NFAT2 expression cases in nonmetastatic CRC and metastatic CRC tissues.

Restrictive clause

 

Affinity Biosciences tests all products strictly. Citations are provided as a resource for additional applications that have not been validated by Affinity Biosciences. Please choose the appropriate format for each application and consult Materials and Methods sections for additional details about the use of any product in these publications.

For Research Use Only.
Not for use in diagnostic or therapeutic procedures. Not for resale. Not for distribution without written consent. Affinity Biosciences will not be held responsible for patent infringement or other violations that may occur with the use of our products. Affinity Biosciences, Affinity Biosciences Logo and all other trademarks are the property of Affinity Biosciences LTD.